Chem. Ber. 109, 246-252 (1976)

Pentacarbonyl[di-tert-butyl(chlordimethylgermyl- und -stannyl)phosphin]chrom(0), -molybdän(0) und -wolfram(0)

Herbert Schumann*, Joachim Held, Heinz-Jürgen Kroth und Wolf-Walther du Mont

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-1000 Berlin 12, Straße des 17. Juni 135

Eingegangen am 20. Mai 1975

Di-tert-butyl(chlordimethylgermyl)phosphin (1) bzw. Di-tert-butyl(chlordimethylstannyl)phosphin (2) reagieren mit Pentacarbonyl(tetrahydrofuran)chrom(0), -molybdän(0) und -wolfram(0) unter Bildung der entsprechenden Pentacarbonyl[di-tert-butyl(chlordimethylgermyl- bzw. -stannyl)phosphin]-metall(0)-Komplexe 3a-c bzw. 4a-c. Die Schwingungs- und Kernresonanzspektren werden diskutiert.

Pentacarbonylldi-*tert*-butyl(chlorodimethylgermyl- and -stannyl)phosphine|chromium(0), -molybdenum(0) and -tungsten(0)

Di-tert-butyl(chlorodimethylgermyl)phosphine (1) and di-tert-butyl(chlorodimethylstannyl)phosphine (2) react with pentacarbonyl(tetrahydrofurane)chromium(0), -molybdenum(0) and -tungsten-(0) to form the corresponding pentacarbonyl[di-tert-butyl(chlorodimethylgermyl- and -stannyl)-phosphine]-metal(0) complexes 3a - c and 4a - c, respectively. The vibrational- and nuclear magnetic resonance spectra are discussed.

Übergangsmetallcarbonylkomplexe mit Triorganogermyl- und -stannylphosphinen als Liganden sind seit einigen Jahren bekannt und inzwischen umfassend untersucht worden¹⁻⁵⁾. Entsprechende Komplexe, in denen das IVb-Element des Phosphinliganden neben organischen Resten noch reaktive funktionelle Gruppen trägt, waren im Falle von Germanium bisher gänzlich unbekannt. Die einzigen bisher bekannten Stannylphosphinderivate dieser Art konnten durch Entmethylierung von Pentacarbonyl[diphenyl-(trimethylstannyl)phosphin]chrom(0), -molybdän(0) und -wolfram(0) mit Borchlorid bzw. Borbromid erhalten werden⁵⁾. Während die freien, diesen Komplexen zugrundeliegenden Stannylphosphine in der Literatur bisher nicht beschrieben wurden, gelang es uns vor kurzem Di-*tert*-butyl(halogenmethylgermyl- und -stannyl)phosphine rein darzustellen und zu charakterisieren⁶⁾. Somit sollten die hinsichtlich ihrer präparativen Verwendbarkeit sehr interessanten Übergangsmetallcarbonylkomplexe dieser Verbindungen auf dem üblichen Syntheseweg¹⁾ zugänglich werden.

¹⁾ H. Schumann, O. Stelzer, J. Kuhlmey und U. Niederreuther, Chem. Ber. 104, 993 (1971).

²⁾ H.-J. Kroth, Dissertation, Techn. Univ. Berlin 1973.

³⁾ W. McFarlane und D. S. Rycroft, J. Chem. Soc., Dalton Trans. 1974, 1977.

⁴⁾ H. Schumann und L. Rösch, in Vorbereitung.

⁵⁾ H. Nöth und N. Sze, J. Organomet. Chem. 43, 249 (1972).

⁶⁾ H. Schumann, W. W. du Mont und H. J. Kroth, Chem. Ber. 109, 237 (1976), vorstehend; H. Schumann und W. W. du Mont, Chem. Ber. 108, 2261 (1975).

Darstellung

Durch Umsetzung von Di-tert-butyl(chlordimethylgermyl)phosphin (1) bzw. Di-tertbutyl(chlordimethylstannyl)phosphin (2) mit Pentacarbonyl(tetrahydrofuran)chrom, -molybdän oder -wolfram in Tetrahydrofuran (THF) werden die Verbindungen 3a-cund 4a-c in Rohausbeuten von 80-90% erhalten:

Die Darstellung der Germylphosphinkomplexe 3a-c kann im sogenannten "Eintopfverfahren" erfolgen, d. h. der Ligand 1 kann bereits bei der Erzeugung der labilen Pentacarbonyl(tetrahydrofuran)metall-Komplexe durch UV-Bestrahlung von THF-Lösungen der entsprechenden Metallhexacarbonyle anwesend sein. Im Falle der Synthese von 4a-c darf 2 jedoch erst nach Beendigung der photochemischen Reaktion zur Reaktionslösung zugegeben werden, da sonst unerwünschte Nebenreaktionen, offenbar unter Spaltung der Sn-P-Bindung von 2, auftreten⁷).

Die Komplexe 3a-c und 4a-c sind durch Umkristallisieren aus Pentan zu reinigen. Die völlige Abtrennung letzter Spuren von Metallhexacarbonyl ist jedoch nur durch verlustreiche Sublimation möglich. 4b, das selbst auf diesem Wege nicht völlig analysenrein erhalten werden kann, ist jedoch spektroskopisch eindeutig identifiziert. Die neuen Verbindungen sind schwach gelb gefärbte Kristalle, sind an der Luft kurze Zeit beständig und liegen in Benzol als Monomere vor.

Schwingungsspektren

Die Werte der Valenzschwingungen vPGeCl und vPSnCl zeigen (Tab. 1) innerhalb der beiden Verbindungsreihen 3a - c und 4a - c nur minimale Schwankungen und sind gegenüber den entsprechenden Werten der freien Phosphine nur wenig zu höheren Wellenzahlen verschoben. Es ist anzunehmen, daß diese Schwingungen mit den PE-Valenzschwingungen gekoppelt sind.

Die Zuordnung der CO-Valenzschwingungen wird durch die gleichzeitige Auswertung von IRund Ramanspektren gesichert. Unter dem Einfluß des Phosphinliganden wird die Symmetrie $C_{4\sigma}$ der M(CO)₅-Einheit erniedrigt, so daß vCO(E) aufspaltet und vCO(B₁) außer als starke Bande im Ramanspektrum auch als schwache Bande im IR-Spektrum auftritt.

Kernresonanzspektren: Die ¹H-NMR- und ³¹P-NMR-spektroskopischen Daten sind in Tab. 2 den ³¹P-NMR-Werten der analogen Trimethylgermyl- bzw. -stannyl-Verbindungen ⁴) gegenübergestellt.

Die Komplexe 3a - c bzw. 4a - c unterscheiden sich bezüglich ihrer ¹H-NMR-chemischen Verschiebungen nur wenig von den zugrunde liegenden freien Liganden 1 bzw. 2. Aufschlußreicher ist dagegen der Vergleich der ³¹P-NMR-chemischen Verschiebung der neuen Komplexe zum einen mit dem Wert des jeweiligen freien Liganden (Koordinationsverschiebung) und zum anderen mit jenem des analogen Pentacarbonyl[di-*tert*-butyl(trimethylgermyl- bzw. -stannyl)phosphin]metall-Komplexes (Substitutionsverschiebung). Die Koordinationsverschiebung der Verbindungen entspricht nach Größenordnung und Abstufung ($\delta Cr > \delta Mo > \delta W$) den in anderen Reihen

⁷⁾ J. Held, Diplomarbeit, Techn. Univ. Berlin 1974.

T (Werte in cm ⁻	ab. I. CO- und PECI-Valenzschwingungen ¹ , Me = CH ₃ ; Perkin-Elmer-Infrarot-Spel Cary 82 in Sv	aus den Infraro ttrophotometer ibstanz, Krypton	t- und Raman-S 457, in Nujol-S 1-Laser, Spectra	spektren der uspension zw -Physics 647.	Verbindung ischen CsJ- 1 nm)	en 1, 2, 3a – c und Küvetten; Raman	4 a – c Spektrophotometer
	Verbindung	vCO(A ₁) _{ct} IR RE	vCO(B ₁) IR RE	vCO(E) IR RE		vCO(A1)hums IR RE	vPECI IR RE
-	(Me ₃ C) ₂ (Me ₂ ClGe)P						355
7	(Me ₃ C) ₂ (Me ₂ ClSn)P						322
38	Cr(CO)s[(Me ₃ C) ₂ (Me ₂ ClGe)P]	2069	1974	1942	1934	1911	318 366
		2060	1974	1949	1936	1916	359
3 b	Mo(CO) ₅ [(Me ₃ C) ₂ (Me ₂ ClGe)P]	2068	1979	1941	1937	1912	367
		I	1	I	1	I	I
3c	W(CO) ₅ [(Me ₃ C) ₂ (Me ₂ ClGe)P]	2068	1974	1943	1936	1908	368
		2066	1968	1942	1928	1900	362
48	Cr(CO) ₅ [(Me ₃ C) ₂ (Me ₂ ClSn)P]	2060	1976	1943	1936	1910	325
	1	2058	1973	1944	1	1912	323
4 b	Mo(CO)5[(Me3C)2(Me2CISn)P]	2058	1974	1941	1932	1906	329
		I	I	I	I	I	I
4c	W(CO) ₅ [(Me ₃ C) ₂ (Me ₂ ClSn)P]	2069	1974	1944	1936	1910	328
	1	2064	1971	1941	1936	1904	327

Tab. 2 butyl(i entspr	. Chemische Verschiebungen (δ in ppm) trimethylgermyl- bzwstannyl)-Komple cchen, bezogen auf den Standard, einer	und Kopplung: xe ⁴⁾ (Me = CF Verschiebung _I	skonstanten (J ir 1 ₃)[TMS bzw. 8 nach niedrigerem für ³¹	n Hz) der 35 proz. C a Feld. V P]	Verbindungen Orthophosphors arian DB 60 (6	1,2,3a-cund iure als extern 0 MHz) für ¹ H	4a – c sowie der er Standard; ne, und Varian XL	analogen Di- <i>tert</i> - gative Vorzeichen 100-15 (40.5 MHz)
	Verbindung	8CH3C	δCH₃E	8 ³¹ P	³ J(¹ HCC ³¹ P)	J(¹ HCE ³¹ P)	¹ J(³¹ P ¹⁸⁵ W)	1 <i>J</i> (³¹ P ^{117/119} Sn)
-	(Me ₃ C) ₂ (Me ₂ ClGe)P (Me ₃ C) ₂ (Me ₃ Ge)P ^{4,}	-1.36	- 0.88	- 28.2 - 14.3	12.1 11.0	2.6 2.6		
38	Cr(CO),[(Me ₃ C) ₂ (Me ₂ ClGe)P] Cr(CO),[(Me ₃ C) ₂ (Me ₃ Ge)P] ⁴⁾	-1.37	- 1.04	-68.7 -53.9	13.9 13.3	2.5 3.5		
3b	Mo(CO)5[(Me3C)2(Me2ClGe)P] Mo(CO)5[(Me3C)2(Me3Ge)P] ⁴⁾	-1.33	- 1.00	-54.6 -41.1	14.3 13.1	2.7 3.5		
3с	W(CO) ₅ [(Me ₃ C) ₂ (Me ₂ ClGe)P] W(CO) ₅ [(Me ₃ C) ₂ (Me ₃ Ge)P] ⁴⁾	1.34	- 1.01	- 39.3 - 40.5	14.4 13.4	2.6 3.5	209.8 220.1	
7	(Me ₃ C) ₂ (Me ₂ ClSn)P (Me ₃ C) ₂ (Me ₃ Sn)P ⁴⁾	- 1.41	-0.76	40.9 20.7	12.1 11.4	(o) 1.4		760.6/795.4
48	Cr(CO) ₅ [(Me ₃ C) ₂ (Me ₂ ClSn)P] Cr(CO) ₅ [(Me ₃ C) ₂ (Me ₃ Sn)P] ⁴⁾	- 1.40	0.95	76.0 54.6	14.3 13.4	1.2 2.0		
4b	Mo(CO)s[(Me ₃ C) ₂ (Me ₂ ClSn)P] Mo(CO)s[(Me ₃ C) ₂ (Me ₃ Sn)P] ⁴⁾	- 1.35	- 0.90	- 39.1	14.4 13.8	1.1 2.0		
4c	W(CO) ₅ [(Me ₃ C) ₂ (Me ₂ ClSn)P] W(CO) ₅ [(Me ₃ C) ₂ (Me ₃ Sn)P] ⁴⁾	-1.33	0.87	-41.3 - 22.9	14.9 14.0	1.2 2.1	206.6 204.8	206.6/216.9 76.5/ 80.0 ²⁾

nichthalogenierter Organoelementphosphin-Komplexe gemachten Beobachtungen^{2, 3)}. Die Substitution einer Methylgruppe durch ein Chloratom beim Übergang von Di-tert-butyl(trimethylgermyl- bzw. -stannyl)phosphin-Komplex zu den neuen Komplexen 3a - c und 4a - c führt in Übereinstimmung mit an anderen Verbindungsreihen gemachten Beobachtungen^{5, 6)} zu einer "Entschirmung" des Phosphorkernes, die in einer negativen Verschiebung von 14–20 ppm zum Ausdruck kommt. Nur für 3c findet man einen überraschend geringen Effekt, was erneut bestätigt, daß Einzelvorhersagen von ³¹P-Verschiebungswerten durch Berechnung aus Inkrementen mit erheblichen Ungenauigkeiten belastet sind^{2, 3, 7)}.

Die Kopplungskonstanten ³J(HCCP) und ³J(HCSnP) zeigen beim Übergang vom freien Liganden zum Komplex die erwartete Vergrößerung, während ³J(HCGeP) keine Veränderung erfährt. Da sich die beiden letzten Größen jedoch aus dem Zusammenspiel mehrerer, oft gegenläufiger Faktoren ergeben, erscheint es nicht zulässig, aus den gefundenen Fakten auf Unterschiede im s-Charakter der Sn – P- und Ge – P-Bindung zu schließen. Im Vergleich zu den analogen Di-tertbutyl(trimethylgermyl- bzw. -stannyl)phosphin-Komplexen⁴ sowie den Diphenyl(chlordimethylstannyl)phosphin-Komplexen⁵ weisen 3a – c bzw. 4a – c bezüglich der Größen ³J(HCGeP) bzw. ³J(HCSnP) deutlich geringere Beträge auf.

Die bisher bekannten Kopplungskonstanten ${}^{1}J(PSn)$ von freien Stannylphosphinen ergeben Werte zwischen + 500 und + 1000 Hz. Bei Koordination dieser Verbindungen über das Phosphoratom an die Übergangsmetalle Cr und W wird diese Kopplungskonstante beträchtlich kleiner und nimmt Werte zwischen + 50 und + 500 Hz an, ein Effekt, der in gleichgerichteter Form, aber mit Vorzeichenumkehr, auch für ${}^{1}J(PC)$ beim Übergang von Triorganophosphinen zu deren Quartärisierungsprodukten zu beobachten ist³⁾. In Übereinstimmung damit stehen die Werte ${}^{1}J({}^{31}P^{117/119}Sn) = 760.6/795.4 \text{ Hz}$ für Di-tert-butyl(trimethylstannyl)phosphin und von ¹J(³¹P^{117/119}Sn) = 76.5/80.0 Hz für dessen Pentacarbonylwolframkomplex²). Eine Bestimmung von ¹J(PSn) für 2 war aufgrund der starken Verbreiterung des ³¹P-Resonanzsignals dieser Verbindung bisher noch nicht möglich. Nach der von uns gemachten Erfahrung, daß bei Ersatz einer am Zinn gebundenen Methylgruppe durch ein Chloratom die Beträge von ¹J(PSn) erheblich ansteigen⁶⁾, ist für ¹J(PSn) von 2 ein höherer Wert als für Di-*tert*-butyl(trimethylstannyl)phosphin zu erwarten. Der Wert von ${}^{1}J({}^{31}P^{117/119}Sn) = 206.6/216.9$ Hz für 4c entspräche somit der "normalen" vorzeichenkonstanten Verringerung von ${}^{1}J(PSn)$ beim Übergang vom freien Phosphin zum entsprechenden Übergangsmetallcarbonylkomplex.

Wir danken der Deutschen Forschungsgemeinschaft, dem Senator für Wirtschaft des Landes Berlin und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

Experimenteller Teil

Darstellung der Komplexe 3a - c und 4a - c: Alle Reaktionen wurden unter sorgfältig von O_2 und H_2O befreitem Argon durchgeführt. Die Mengen der zur Reaktion gebrachten Ausgangsverbindungen und die Analysenwerte der Komplexe sind Tab. 3 zu entnehmen. Zur Darstellung wurde eine Lösung der Übergangsmetallcarbonyle in 120 ml THF in einer Bestrahlungsapparatur unter magnetischem Rühren mit UV-Licht (Quarzlampe Q 81 Hanau) bei Raumtemp. bestrahlt. Der Ablauf der Umsetzungen wurde anhand der abgespaltenen Mengen an Kohlenmonoxid, das in einem wassergefüllten Gasometer mit vorgeschaltetem Trockenrohr (P_4O_{10}) aufgefangen wurde, verfolgt. Nach Abspaltung der berechneten Menge Kohlenmonoxid (nach ca. 2–4 h) wurde die Lösung des Pentacarbonylmetall-THF-Komplexes in einen 250-ml-Dreihalskolben

ng und Analysenwerte der Komplexe 3a – c und 4a – c	complex Summenformel Analyse Mol C H Masse*)	i{di-tert-buty}- lgermyl) phosphin }-	(3a) C ₁₅ H ₂₄ ClCrGeO ₅ P Ber. 37.90 5.29 475.4 Gef. 37.70 5.11 479	0) (3b) C ₁₅ H ₂₄ ClGeMoO ₅ P Ber. 34.69 4.66 519.3 Gef. 35.04 4.32 526	(3c) C ₁₅ H ₂₄ ClGeO ₅ PW Ber. 29.67 3.98 607.3 Gef. 29.14 3.97 605	l{di-tert-butyl- \stannyl)phosphin]-	(4a) C ₁₅ H ₂₄ ClCrO ₅ PSn Ber. 34.55 4.64 521.5 Gef. 33.41 4.03 523	0) (4b) C ₁₅ H ₂₄ ClMoO ₅ PSn Ber. 31.86 4.28 565.4 Gef. – – – –	(4c) C ₁₅ H ₂₄ ClO ₅ PSnW Ber. 27.57 3.70 653.4 Gef. 27.38 3.62 648
. Darstellung und Analysenwerte der Komplexe 3a-	Komplex Summenf	entacarbonyl / di-tert-butyl- chlordimethylgermyl) phosphin /-	chrom(0) (3a) C15H24ClCr	molybdän(0) (3b) C ₁₅ H ₂₄ ClG	wolfram(0) (3c) C ₁₅ H ₂₄ ClG	entacarbonyl / di-tert-butyl- chlordimethylstannyl) phosphin /-	chrom(0) (4a) C ₁₅ H ₂₄ ClCr	molybdän(0) (4b) C ₁₅ H ₂₄ ClM	wolfram(0) (4c) C ₁₅ H ₂₄ ClO.
Tab.	produkte M(CO), g (mmol)		2.2 (10) Cr	2.6 (10) Mo	3.4 (10) W	-	2.2 (10) Cr	2.6 (10) Mo	3.4 (10) W
	Ausgangs Ligand g (mmol)		2.8 (10) 1	2.8 (10) 1	2.8 (10) 1		3.3 (10) 2	3.3 (10) 2	3.3 (10) 2

. Ę ć

Chemische Berichte Jahrg. 109

übergeführt und unter Rühren die angegebene Menge 2 in 50 ml THF zugetropft und anschlie-Bend kurz gerührt. Im Falle der Darstellung von 3a - c kann 1 bereits während der Belichtung anwesend sein. Daraufhin entfernte man das Lösungsmittel i. Vak. (-20 bis 0°C/10⁻³ Torr), und kristallisierte die in 80–90 proz. Rohausb. anfallenden Produkte mehrmals aus Pentan um (Auflösen bei Raumtemp., Ausfällen bei -78°C). Die Komplexe zersetzen sich beim Erwärmen im abgeschmolzenen Kapillarröhrchen zwischen 95 und 120°C bereits vor dem Schmelzen. Dabei entstehen dunkel gefärbte Produkte. 4b war nicht analysenrein erhältlich.

[221/75]